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Abstract

A new analytical-numerical approach to investigation of the response of multilayer plates to impulse
loading is described in this paper. The plate’s behaviour is described by the equations of the three-dimensional
elasticity theory. According to the approach being proposed, the sought for functions included in the system
of equations and the boundary and initial conditions are presented as Fourier series expansions in the
tangential directions. The derivatives of these functions in the transverse direction are replaced by their
finite-difference presentations. As a result of such transforms, the problem of vibration of a multilayer plate
is reduced to integration of a system of ordinary differential equations with constant coefficients. Integration
is performed by expansion into the Taylor’s series. The possibilities of the approach proposed and the
validity of results obtained is illustrated by several examples of calculating vibration processes and the
processes of propagation of elastic waves. A comparison of the results obtained on the basis of other
approaches has been performed. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

As a rule, two-dimensional theories (see, for example, Grigoliuk and Kogan, 1972; Grigoliuk and
Kulikov, 1988; Reddy, 1989, 1993; Smetankina et al., 1995) are used for investigating the response
of multilayer structures. In this case, it is relatively easy to obtain analytical solutions and numerical
results. Within the framework of two-dimensional theories, the stressed—strained state is described
approximately. In some cases the use of these theories yields invalid results (e.g. big relative
thickness, necessity of investigating wave processes, etc.).

The behaviour of multilayer structures is described most accurately within the framework of the
three-dimensional elasticity theory. In so doing, obtaining analytical solutions and numerical
results are connected with overcoming significant difficulties.
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In this statement the many problems have been solved for the case of static loads (Pagano, 1969;
Little, 1973).

In this work, an analytical-numerical method of solving the problem of transient vibrations of
a multilayer plate under impulse loading has been suggested within the framework of the three-
dimensional elasticity theory. The behaviour of the plate is described by Lamé’s equations.

The essence of the method consists in that the sought for displacement functions are presented
in the form of expansions into double Fourier series in the direction of plane coordinates x,, x, up
to a complete orthogonal system of trigonometric functions satisfying the boundary conditions
over the plate contour. The partial derivatives of these functions in the direction of the normal
coordinate x; are replaced by their finite-difference presentations. As a result of these transformes,
the problem of transient vibration of a multilayer plate under the action of an impulse load is
reduced to integration of a system of ordinary differential equations with constant coefficients.
The system is integrated by expanding the solution into the Taylor’s series (Bakhvalov, 1975).

The method described in this paper allows one to obtain the solution of the dynamic problem
and numerical results relatively simply.

The feasibility of the method and the validity of results are demonstrated by several examples.
In the case of a static load, the results obtained by the method described are compared with the
exact solution (Little, 1973) as well as with the results obtained on the basis of the first-order
(Reissner, 1944) and high-order (Lo et al., 1977) two-dimensional theories. The first-order theory
is based on the following kinematic hypotheses

U= uUy+u X3

UV="0y+0;"X3

w = w, (1)
the high-order theory is based on the following relationships

U=uy+u "x;+u, 'x§+u3 'xg

V=004V, X340, XI5 X3

W= Wo+w, *X3+Ww," X3, )

where u = u(x,, x,, X3), v = v(xy, X,, X;)—displacements of the plate point in the direction of the
plane coordinates x; and x,, correspondingly; w = w(x,, x,, x;)—displacement of the plate point
in the direction of the normal coordinate x;.

When studying transient vibrations of a three-layer plate under the action of impulse loading,
the results are compared with similar data obtained with the help of a rectified high-order theory
(Shupikov and Ugrimov, 1997).

The phenomena of propagation and reflection of elastic waves are investigated by example of a
one- and two-layer plate.

2. Problem statement

A multilayer rectangular simple supported plate consists of / homogeneous isotropic layers of
constant thickness. The geometric parameters of the pack are as follows: 4, B are the plate plan
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Fig. 1. Multilayer plate.

dimensions; /' is the thickness of the i-th layer. It is assumed that contact between layers excludes
their delamination and mutual slipping. The transverse load ¢ = ¢(x,, x., ) is applied to the external
surface of the first layer.

The plate is referred to the Cartesian system of coordinates Ox,x,x; and the coordinate plane
Ox,x, is linked with the external surface of the first layer (Fig. 1). The vectors ¢,, &,, &; are unit
vectors of axes Ox,, Ox,, Ox; correspondingly.

The behaviour of each layer is described by Lamé’s equations (see Novatsky, 1975):

o 0%t
WD+ GOV 1) =" 3)
where V is gradient, i.e.
V — 7 i +é i +e 4
-4 X © 0x, 63 0X4

The system of eqns (3) is solved in combination with the conditions on the external surfaces of
the 1-st and /-th layers

Pél =P§2 =0, Pé3 = —q atx;=0;
pgk=0 atX3 =éla k= 152935

&=y, ()

boundary conditions over the plate contour

po=us=uy=0, atx, =0,4;

pPn=uy=uy=0, atx,=0,B, i=11 (5)
contact conditions of adjacent layers
we =, py=piits atx; =&, k=123, i=1I1-1; (6)

and initial conditions
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aai(x]9x27 X3, 0) i

ot

ai(xlax2’x370): 07 l:171 (7)
Here i is the layer number; A, u' are Lamé’s coefficients; p’ is the specific density; @ is the
displacement vector of the i-th layer point; u} = u}(x,, X,, X3, f) is the projection of the displacement
vector on the coordinate axis Ox; (k = 1,2, 3); pj; are the components of the stress tensor.

The stress tensor components are calculated by the formulae

P = A0y +2p'uly,

0, j#k . . . ; . .
5jk: . b u;/:ulll+u[22+ul33’ 1= 1’13 ]ak: 13253a (8)
1, j=k
where uj;, is the strain determined by Cauchy’s relationships
. 1jou; ou
) <8xk + 6xj>' ©)

Lamé’s coeflicients are linked with Young’s modulus (£') and Poisson’s coefficient (v') by the
relationship
D VE' . E
T aena—2) F Ty

3. Solution method

Displacement and the external load are expanded into double Fourier series by a system of
orthogonal functions satisfying their boundary conditions (5)

M N
u;c = Z Z (D;{nm(xf%a t) .Bkmn(x]7x2)a k = 1727 39 l: 1915

m=1n=1
M N

q = Z Z qnzn(x37l).B3mn(xlax2)’
m=1n=1

mnx, . NTX,
sin——
A B’

mnx, nTX, . MTX, . NTX,
4 cos B B;,,, = sin 1 sin B

Blmn = COs B2mn = Sin (10)
The partial derivatives of the functions ®j,,, (x5, f) over coordinate x; are replaced by their finite-

difference presentations. For this, in each layer a regular grid is built

i(s) i—1 i i i hi

X8 =&""+s1', 5=0,8, r=§

, i=1,1

Let us define

(D;((211 = (D;(HZVI (xl:;(s)ﬂ t)'



A.N. Shupikov, S.V. Ugrimov | International Journal of Solids and Structures 36 (1999) 3391-3402 3395

For approximation of partial derivatives, a three-point template is used (Forsythe and Wasov

1960)

i(s i(s+1 1 2 1 i(s i(s—1
aQ;\V(};?}’I _ (D}((}’;l‘: ) q)l(l;HI ) a QZ()‘”)}’[ _ QZ()X”; ) 2(D;((};3n + (D}((};‘ll‘l ) (1 1)
03 27 T ox? (t)? '

As a result of these transforms, system (3) for each pair (m, n) takes the form

o 2u n*m? . m*n? b
R B Y e [ (PR Lol
(7) (7)) A (7))

- mnn® . Atpm A2
_ /'{l i q)l(s) (I)z(s+ 1y _ I(S Dy & ,
( + 2 ) AB 2nm 21: ( 3mn 3nm ) d[2

2u m’n? . nPnt]
) g, 4+ A A @g,;,m—[(f;w SV mks }D';f,:,,
T

i i 2 Fyils)
'u i(s+1) & +M nr i(s+1) z(r 1) d (I)2mn
+— mn +— () mn mn = 5
(,L_I)Z 2 27 i B ( 3 3 ) p dt

/1’+ mn A+ nm A2 .
21“ @ — i) — 21“ O =0+ )2“ v,
i i 2. 2 2 2 i i 2 goi(s)
_|:2}, +4u . (m’n N n°m OO 4 A+2u AEU gy 2 P drow, (12)
(I-l) 2 A 2 B 2 I71il (TI) 2 mn d[z b
s=0,8i=1,1

Conditions (4), (6) and (7) are defined by the expressions

1(1 1(—1 1(1 1(—1
(I)limg _q)l)(nn ) mm 1(0) _ (D2£mz _(I)Zinn ) 10) _
# A (D3mn - 0 2—1 B (DSmn - 0
T T
mm nm (I)l(l)_q)l(—l)
1 1(0 1(0 1 1 3mn 3mn
—4 <‘4¢n;g-+£;a5;3>-k(a R .
1(ST+1 I(ST—1 I(ST+1 I(ST—1
q)l(mn+ )_(Dl(mn ) mm [(51) _ O (DZ(mn+ ) -0 (mn ) + @(DI(SI) _ 0
21_] A 311711 21_] B 3mn
I 1
mm nm (DI(S +])_(I)I(S —1)
21 (ST 1(ST I I 3mn 3mn .
— <A (I)l(m") + B(I)2(mn)> + (i + 2.“ ) 21_] = 0) (1 3)

D = P, k=1,2,3,

kmn
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i(ST+1 i(ST—1 i+ 1(1 +1 1
,ui <q)l1(m/1 )_q)ll(mn ) m (D,(gz ) H[+1 (q)[]mn( ) q)l mn( : m (D[+l(0)>

. 3 3
27 A mn 2‘L'l+ 1 A mn
i(ST+1 i(ST—1 i+ 1(1 i+1(—1
i (DZZ(mn_._ )— (I)IZ(mn ) ]’ln i(S%) i+1 q)l2_r:1n( ) — q)IZ_;m( ) n i+1(0)
2 P ¢)3mn =H i ®3mn
27! 2‘El+ 1

L (mmo i _ ) i3(S"+1)_(I)i3(S"71)
— X (A O+ ®’§,§n>+(i’+2y’)

B 27

. mn nmwo , @RI @it 1=
+1 +1(0 +1(0 i+ 1 +1 3mn 3mn
= —/ (A Y, + ECDIZHW( )>+(ﬂl +2u77) g+

L i=1LI-1; (19

| /5, (0
a0 = P g o1 (15)

Conditions (5) are met exactly by a corresponding selection of the coordinate functions B,,,.

Conditions (13) and (14) allow one to exclude the values ®@;", @5+D
(i=1Lk=1,2,3;m=1,M;n=1,N) of the sought for functions in the “extracontour” points
from system (12).

Hence, the solution of problems (3)—(7) on the dynamic response of a multilayer plate to action
of an impulse load is reduced for each pair (m, n) to integration of a system of ordinary differential
equations with constant coefficients. In this paper, the system obtained is integrated by using the
method of expanding the solution into a Taylor series.

4. Numerical results

The feasibility of the method and the validity of results may be illustrated by several examples.

In case of static loading of an infinite homogeneous strip (2/4 = 1.5,v = 0.25), the results of
calculations according to the method described are compared with exact solutions given in the
paper by Little (1973), as well as with data obtained from the two-dimensional theories (Lo et al.,
1977). The strip is effected by a load

g0r) = gosin ™"
Figure 2 shows the stress distribution over the plate thickness in its middle section.

The possibility of investigating wave and vibration processes is demonstrated for impulse
loading. One-, two- and three-layer plates are considered here. The plate parameters are given in
Table 1.

One- and two-layer plates are effected by the load
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Fig. 2. Distribution of stresses over the thickness in a strip middle section.

Table 1
Parameters of multilayer plates

Plate A (m) B (m) i K (m) E' (MPa) v o' (kg/m?)
One-layer 0.3 0.3 1 0.1 6.67x10* 0.22 2.5%x10°
Two-layer 0.3 0.3 1 0.05 5.59 x 10° 0.38 1.2x10°

2 0.05 6.67x10* 0.22 2.5%10°
Three-layer 0.42 0.47 1 0.012 6.67x10* 0.22 2.5%x10°

2 0.002 2.74 x 10% 0.38 1.2x10°

3 0.012 6.67 x 10* 0.22 2.5%x10°

( [) t . Xy . TTX,
X1, X5,1) = qgoexp| — = |sin——sin ,
q(Xy, X, qo €Xp T 4 B

where ¢, = 100 kPa and 7' = 28 pus.

Figure 3 shows the dynamic response in the middle of a homogeneous plate. Data were obtained
for S' = 100. The interval ¢, corresponds to the time of travel of a dilatational wave over the plate
thickness and it corresponds to the similar value obtained from the precise formula

1
t, = — ~ 18.1 us,
=y Hs

where V is the dilatational wave velocity (Novatsky, 1975)
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Fig. 3. One-layer plate response: solid line, x; = 0; dashed line, x; = 5 mm ; sloping dash—dot line, x; = 100 mm.

At 2u!
V= /#z5.52-103m/s.
p

Periodic “surges” seen on the graphs for stresses p}, and p}; (dashed line) appear in those moments
of time when the wave reflected from the external surface (x; = A') arrives at the point being
considered (x; =5 mm). Period ¢, corresponds to the time the wave travels the distance
[ = 2(h'—0.005) m and coincides with the same value obtained from the precise formula

/
2=y Hs
Figures 4a and b show the dynamic response in the middle of a two-layer plate. Data were

obtained for S' = S = 50. The pattern of the relationships shown in Figs 4 is the same as in Fig.
3 for a homogeneous plate. In the case of the “surges” of stresses p',, p5; (i = 1,2) appear at the
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Fig. 4a. Two-layer plate response. First layer: solid line, x; = 0; dashed line, x; = 5 mm ; sloping dash—dot line, x; =

50 mm.

moment of time when the waves reflected from the layers’ interfaces or from the external surfaces
of the plate arrive at the point being considered (x; = 5 mm).
The vibrations of a three-layer rectangular plate have been investigated for the action of an

evenly distributed impulse load

q(xl > X2, [) = qOH(t):

where H(r) is Heaviside’s function, ¢, = 10 kPa.

Figures 5 and 6 show the time dependence of deflections and stresses in the plate middle
section on the external surface of the third layer. Data were obtained for §' = §° = 10, S = 8,
M = N = 25. The results of calculations by the method proposed are compared with similar data
obtained on the basis of a high-order two-dimensional theory (Shupikov and Ugrimov, 1997),
which is founded on hypothesis (2) for each layer.

0<x, <4, 0<x,<B,
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Fig. 4b. Two-layer plate response. Second layer : solid line, x; = 50 mm ; sloping dash—dot line, x; = 100 mm.

5. Conclusions

A simple to implement analytical-numerical method of solving the problem of transient
vibrations of multilayer plates within the framework of the three-dimensional elasticity theory has
been proposed.

Calculation results (Figs 2, 5 and 6) demonstrate a fine matching of results obtained on the basis
of the method proposed with the exact solution and calculation results based on the high-order
two-dimensional theory.

The possibility of investigating wave processes in thick homogeneous and multilayer plates has
been demonstrated. The plotted relationships (Figs 3 and 4) demonstrate an express wave character.

The method proposed may be useful for assessing the field of application of two-dimensional
theories when it is necessary to investigate the process of elastic wave propagation, as well as when
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Fig. 5. Deflections of external surfaces of three-layer plate under impulse loading : solid line, presented method ; dashed
line, high-order two-dimensional theory.
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Fig. 6. Stresses of external surfaces of three-layer plate under impulse loading: solid line, presented method ; dashed
line, high-order two-dimensional theory.

the stressed—strained state of a structure being investigated has an essentially three-dimensional

character.
The application of the method being considered is not limited by the case of isotropic plates. It

may well be extended to the case of anisotropic plates.
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